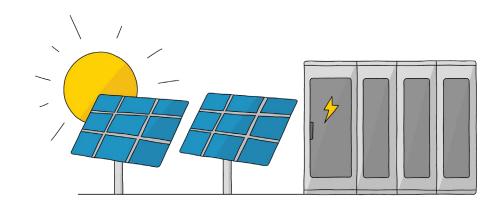

Flipping the Switch Helping Schools Achieve Clean Energy Goals

Let's Help Keep Students Safe!



Safety Tips for a Smooth Start to the School Year:

- Watch for School Zones: Slow down and stay alert—especially near crosswalks and bus stops.
- Drive Carefully Around Buses: Never pass a stopped school bus with flashing lights. Children may be crossing.
- **Backpack Safety:** Ensure backpacks are not too heavy and fit properly to avoid strain.
- **Emergency Contacts:** Update your child's emergency contact info and review safety plans.
- Mental Health Matters: Check in with students emotionally—new school years can bring stress.
- Online Safety: Remind kids about safe internet use and protecting personal information.

Quick House Keeping

- Remember to stay muted and cameras off!
 You can turn on during live Q&A.
- Please use the Q&A function for questions.
- Feel free to chat and let us know where you are from!
- Slides and recording will be shared shortly after the presentation.
- Please fill out the survey in the follow up email to let us know how we can improve for the October 8th event.

AGENDA

- ☐ Intros and Kick-off (10 min)
- ☐ SCE Foodservice Technology Center (15 min)
- ☐ School District Case Study #1 Santa Barbara Unified School District (10 min)
- ☐ SCE School Transportation Electrification Advisory Services (15 min)
- ☐ School District Case Study #2 Orange Unified School District (10 min)
- ☐ School Electrification Funding and Resources (10 min)
- □ Q&A (15 min)

Today's Presenters

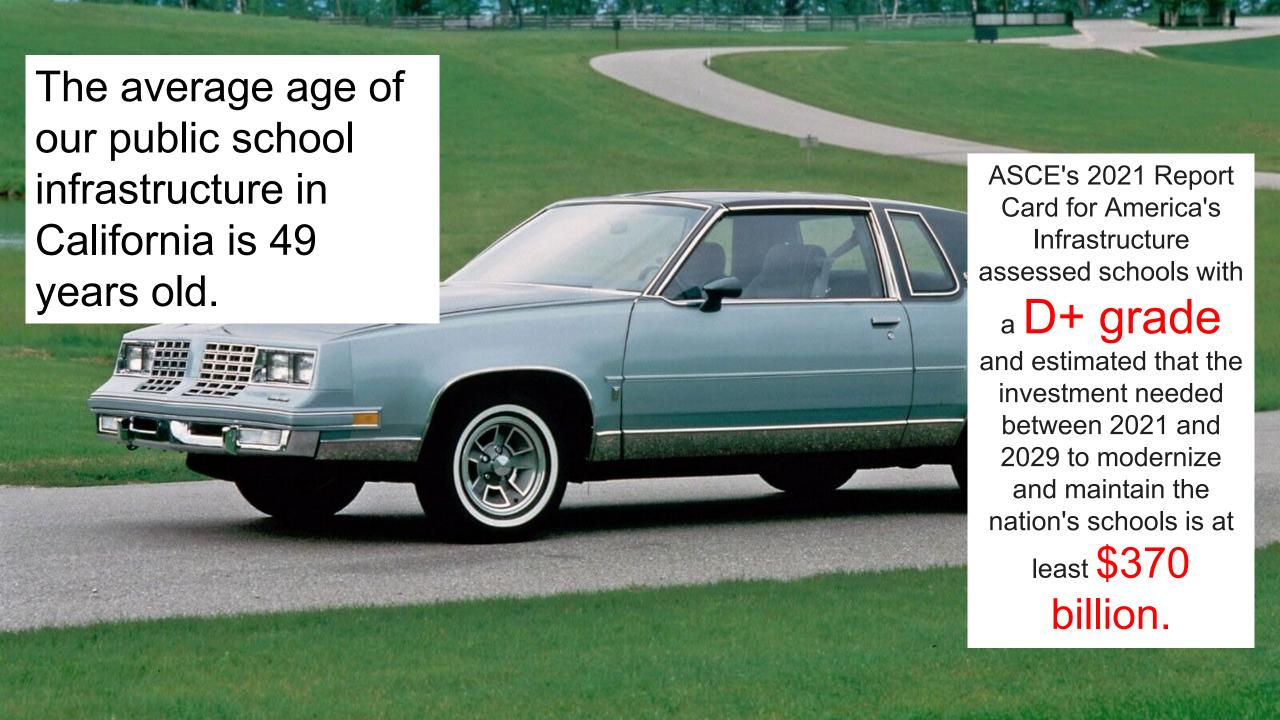
Amy DischerSr. Advisor, Reach Codes,
SCE

Andre Saldivar
Sr. Engineer, Food Technology,
SCE

Desmond HoOperations & Sustainability
Coordinator, SBUSD

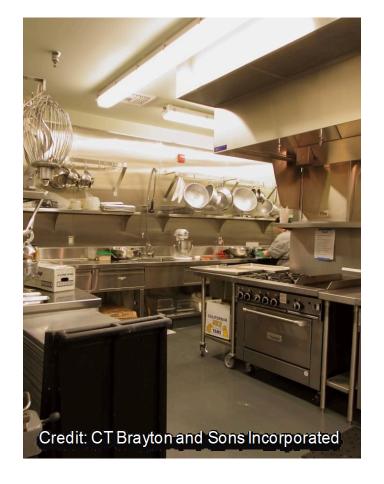
Ramiro Lepe
Sr. Advisor, Transportation
Electrification, SCE

Christina Celeste-Russo
Director of Transportation,
Orange USD

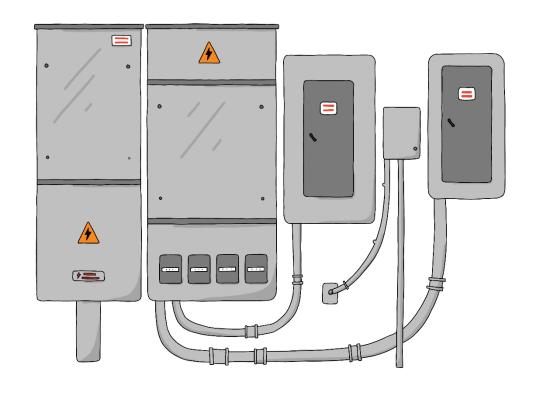

Omar Dena
Transportation Manager, Orange
USD

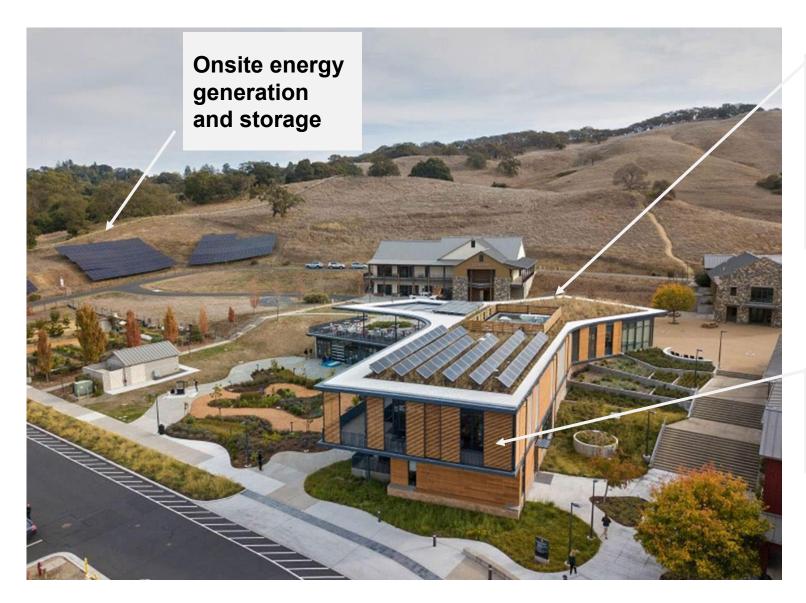
Reilly LovelandAssociate Director,
New Buildings Institute

Quick Level Set



Fuel Choice Greatly Impacts Costs, Health and Carbon Emissions

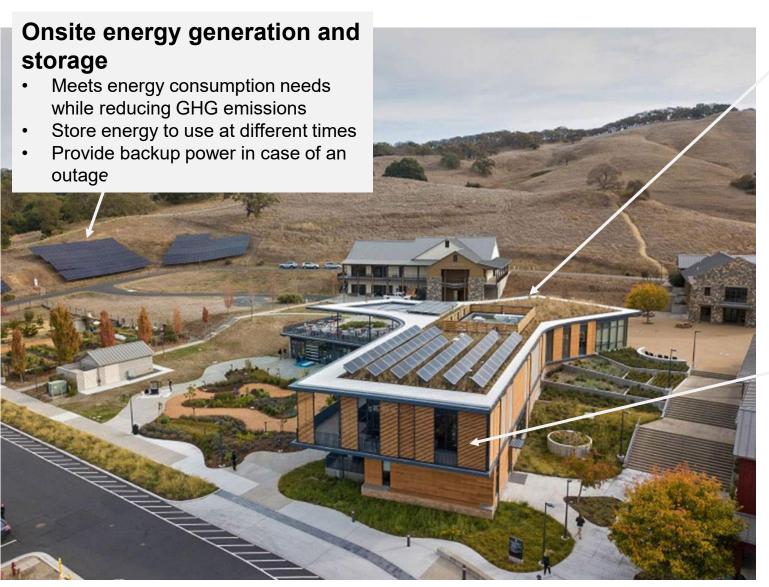

Gas-powered equipment is common for space heating in the United States, Gas is also burned for water heating and in kitchens.


Electrification – a VERY important strategy

- To address failing systems, climate adaptation, and rising costs.
- However! Electrification is not always guaranteed to be beneficial or cost less.
- The approach matters and is influenced by many factors:
 - timing,
 - improvements to adjacent systems,
 - and/or occupant/facilities manager buy-in
 - and other barriers

Artwork by Nicole Kelner

Major building elements


Building systems

- HVAC
- Water heating
- Lighting
- Kitchen equipment
- Electrical systems
- Plug and process loads
- Controls

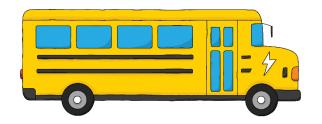
Building Envelope

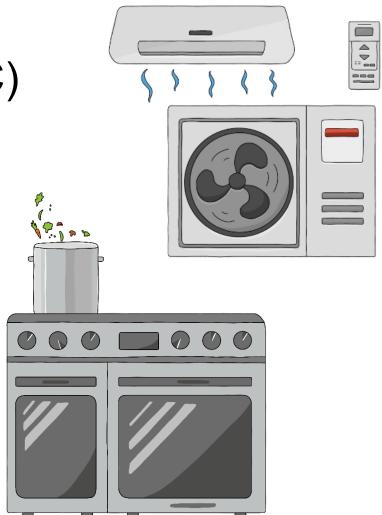
- Roofs and walls
- Foundation
- Windows and doors

Major building elements

Building systems

 Defines the magnitude of total energy consumption and GHG emissions


Building Envelope


 Passively impacts building system energy consumption

Electrification Technologies in Schools

- Space conditioning and ventilation (HVAC)
- Water heating
- Kitchens and cooking
- Laundry
- Transportation

Flipping the Switch - Helping Schools Achieve Clean Energy Goals

Andre Saldivar
Foodservice Technology Center (FTC)
SCE

WHY ELECTRIC

- More EFFICIENT
- Faster
- Safer
- Flexible
- Plug & Play
- Up Front Co\$t is less on most products
- Less Parts
- Cooler Kitchen
- Easier to Clean
- NO HOOD REQUIRED
- Less Space
- Less Ventilation

WHY INDUCTION

Benefits of Induction:

Fast Flexible Modular **Efficient** Controllable Safer **Easier to Clean** Lower Ambient Heat Gain

WHY INDUCTION

Induction Warming Considerations

Benefits of specifying induction serving systems include:

- -Allows food to be held at precise temperatures
- -Available in a square or round drop-in design
- -No water lines or drains required
- -Reheat and hold functions
- -Pan Compensation
- -Automatic stir notification and timer
- -Dry pan detection
- -Less heat to space
- -Less labor associated with cleaning wells and crusted pans
- -Safer than traditional warmers

Holding Well Replacement

- Standard Steam Holding Wells
 - Water based
 - Inconsistent Holding Temps
 - Food Quality issues
 - Safety Hazard (Hot to Touch)
- INDUCTION "Dry" Holding Wells
 - Only ON when activated
 - Very Precise Holding Temp
 - Dry Well vs Wet Well

INDUCTION WELL FOR FOODSERVICE APPLICATIONS

ET10SCE1430 Report

Prepared by:

Design & Engineering Services Customer Service Business Unit Southern California Edison

September 2011

Introduction	1
Assessment Objectives	1
Product Assessed	1
Test Methodology	2
Results	:
Conclusion	3
Recommendation	1

TOTAL ENERGY

	(KW)	CONSUMPTION (KWH/YR)
Baseline – Steam Wells	2.09	10,599
Induction Wells	1.11	5,102
Reduction/Savings	0.98	5,497

DEMAND

Energy for What's Ahead[™]

What about Back of the House cooking?

Lame

• What about Back of the House cooking?

VS

Gas Range

Energy Star Electric Cooktop **Specification**

• What about Back of the House cooking?

VS

Gas Stock Pot Burner

• What about Back of the House cooking?

VS

Electric Cooking

VENTLESS ADVANTAGE

ASHRAE

Cor

Approved by ASHRAE on July 31, 201

This Standard is under continuous mai Committee has established a documer timely, documented, consensus action instructions, and deadlines may be ob

form from the Senior Manager of St ASHRAE website (www.ashrae.org) o E-mail: orders@ashrae.org, Fax: 678orders in US and Canada). For reprint

This file is

© 2016 ASHRAE

© ASHRAE (www.ashrae.org). For personal use only. Additional reproduction, distribution, or transmission in either print or digital form is not permitted without ASHRAE's prior written permission.

TABLE 2 T	ype II Hood Requirements by Appliance Description
-----------	---

Cabinet, holding, electric	
Cabinet, proofing, electric	
Cheese-melter, electric	
Coffee maker, electric	
Cookton, induction, electric	
Dishwasher, door-type rack, hot water sanitizing, heat recovery and vap	or
reduction, electric Dishwasher, door-type rack, chemical sanitizing, heat recovery and vaporeduction, electric	r
Dishwasher, door-type dump and fill, hot water sanitizing, electric	
Dishwasher, door-type dump and fill, chemical sanitizing, electric	
Dishwasher, pot and pan, hot water sanitizing, heat recovery and vapor reduction, electric	
Dishwasher, powered sink, electric	
Dishwasher, under-counter, chemical sanitizing, electric	
Dishwasher, under-counter, electric	
Dishwasher, undercounter, hot water sanitizing, heat recovery and vapor reduction, electric	
Drawer warmer, 2 drawer, electric	
Egg cooker, electric	
Espresso machine, electric	
Grill, panini, electric	
Hot dog cooker, electric	
Hot plate, countertop, electric	
Ovens, microwave, electric	
Popcom machine, electric	
Rethermalizer, electric	
Rice cooker, electric	
Steam table, electric	
Steamers, bun, electric	
Steamer, compartment atmospheric, countertop, electric	
Steamer, compartment pressurized, countertop, electric	
Table, hot food, electric	
Toaster, electric	
Waffle iron, electric	
Kettle, steam jacketed, tabletop, electric, gas and direct steam	
Oven, convection, half-size, electric and gas (non-protein cooking)	
Pasta cooker, electric	

This file is licensed to Andre Saldivar (and

SYR BUILDING ENERGY AND ENV 263 Link Hall, Syracuse Unive

ASHRAE Countertop C

Submitted to American Society of

Meng Kong, Res Jianshun KwangHoon Bin Yan

Chan

Waffla maker

Data generated in this project is used to update Radiant and Convective Heat Gain from Unhoo Cook) Conditions and 5B Recommended Rates Appliances During Idle (Ready to Cook) Condi Fundamentals (2013).

Table 2 Recommended Rates of Radiant and C Appliances during Idle (Ready-to-Cook) Condi 5A, Chapter 18 in ASHRAE I

	Energy F	Rate	
Appliance	Rated	Standby	Sensible Radiant
Cheesemelter	8,200	3,300	1,500
Egg cooker	8,100	850	200
Hot dog roller	5,500	4,200	900
Hot plate: single burner	3,800	3,400	1,100
Cooktop, induction	17,100	0	0
Microwave oven	5,800	0	0
Oven, conveyor (< 6kW)	17,100	13,500	2,500
Panini Grill	6,100	2,300	700
Popcorn popper	2,900	400	100
Rice cooker	5,300	300	50
Soup warmer	2,700	1,300	0
Steamer (bun)	5,100	700	100
Steamer, countertop	28,300	1,200	0
Toaster, conveyor	6,000	5,800	1,200
Toaster, vertical	8,900	2,600	600
Tortilla Grill	7,500	3,600	900

0.200

000

700

000

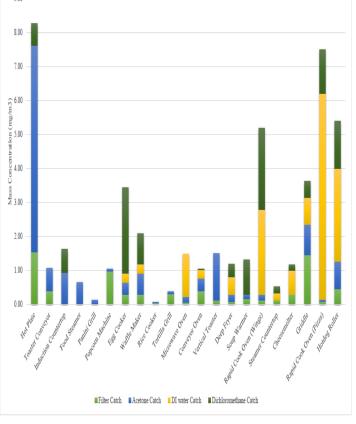


Figure 15 Grease particulate and vapor concentration (Particulate grease = "Filter Catch" + "Acetone Catch"; Condensed organic vapor = "Dichloromethane Catch"; Inorganic vapor = "DI Water Catch")

-,	,			
2,700	0 3,600	0.48	0.25	Energy for

Energy for What's Ahead[™]

Electric Cooking

CALIFORNIA CONFERENCE OF DIRECTORS OF ENVIRONMENTAL HEALTH

VENTLESS ADVANTAGE

COOKING EQUIPMENT EXHAUST VENTILATION FOR THE LOCAL ENFORCEMENT.

September 2009

PURPOSE

To provide uniform standards for exemption of cooking equir. kitchens that due to particular specifications may not require ventilation system. It is anticipated that this document provid evaluating the cooking appliance and such evaluation is star jurisdictional or regional body making an assessment is cons assurance for applicability to any jurisdiction.

BACKGROUND

The California Mechanical Code and the California Healt require that all cooking equipment in food facilities be vent gases, heat, odors, steam, and grease laden vapors. Prior t California Retail Food Code, letters for equipment vent function of the Food and Drug Branch of the California D. (formerly CDHS) under section 114140 of the former CU issued these types of letters for some time now and the evventilation exemption has defaulted to the local level.

The Plan Check sections of the Local Enforcement Agencie direction or method of evaluating cooking equipment ex industry. This resulted in the Southern California Food Committee charge to establish an across the board guideling cooking equipment ventilation exemption at the local or region

AUTHORITY

CALIFORNIA HEALTH AND SAFETY CODE PART 7. CALIFORNIA RETAIL FOOD CODE CHAPTER 6. Equipment, Utensils, and Linens Article 2. Ventilation Sections 114149, 114149.1, 114149.2, and 114149.3

(c) This section shall not apply to cooking equipment when the equipm local enforcement agency for evaluation, and the local enforcement ager does not produce toxic gases, smoke, grease, vapors, or heat when ope recommended by the manufacturer. The local enforcement agency may to perform any necessary evaluations.

Specific Equipment Recommended for Exemption

EQUIPMENT

Coffee Equipment

- Um or brewer Roaster (electric) Corn on the Cob Warmer
- Clam Shell Grill/Panini-for heating non-grease producing foods

(Tortillas, pastries, rolls, sandwiches from precooked meats and cheeses).

 A unit with dual grills is counted as two equipments. Crepe Maker (no meats)/ Waffle Cone Maker / Waffle Iron Limit to 3 units

Hot Dog Warmer

Hot Plate

 Electric (one burner only) Induction cooker

Ovens

- · Electric convection oven, 12 KW or less
- · Portable ovens (microwave, cook and hold, ovens utilizing Visible and Infrared light technology)

Popcorn Popper

- · Without external grease vapor release
- Rethermalizers (max temperature of 250°F)

Rice Cookers

Electric

Rotisserie

Electric and enclosed with max. ambient cavity temperature of 250°F *#

Toaster -countertop (bread only)

- Equipment marked with an asterisk typically does not need mechanical exhaust ver However, the following criteria should be taken into consideration when determining t for mechanical exhaust ventilation:
 - Installation of other unventilated heat generating equipment in the same are refrigeration condensers, steam tables, or counter-top equipment;
 - Presence of heating / cooling (HVAC) system;

- Size of the room or area where the proposed equipment will be installed, including ceiling
- · How the proposed equipment will be operated, e.g., the types of food prepared, how
- Nature of the emissions, e.g., grease, heat, steam, etc.;
- Method of producing heat, e.g., gas, electricity, solid fuel, etc.
- · Adequate amount of general ventilation: In poorly ventilated confined areas where the proposed equipment (like an electric convection oven, clamshell grill, or low-temp. dishwasher) is located, adequate general ventilation could be provided by a ceiling or wall exhaust fan that provides an air change rate of 3-5 minutes per change.
- · All equipment shall be operated and maintained in accordance with manufacturer's recommendations.

Equipment such as Electric ovens, rotisseries, and clamshell grills shall be limited to 2 units without a hood. In most cases only 2 units of any hood exempted equipment should be placed; this may vary based on the field evaluation.

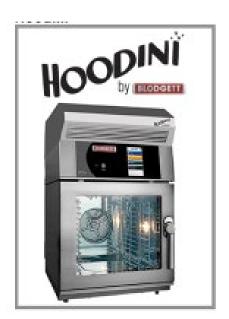
Special Consideration for Recirculating Ventilation Systems

The primary benefit of recirculating systems is that they do not require grease ducts with discharge to the outdoors. They are ideal for installations in building designs where it is impractical or too expensive to exhaust to the outdoors. Examples include some indoor food carts, stadiums, arenas, and operations where there is limited food preparation or where there are physical limitations with access to the outdoors. Appliances have been exempted when they include an integral ductless powered ventilation system shown to remove grease, smoke, fumes, and vapors that are emitted during the cooking process. To be exempted these systems must meet applicable performance and construction standards and include built-in fire suppression systems. Nevertheless, heating and cooking appliances produce heat during operation that may result in uncomfortable working conditions for food employees and increased potential for contamination of food by perspiration. Many times this can be resolved with an adequate ceiling fan. Criteria for approval of Recirculating Systems that may be used by Plan Check include:

- The facility will be limited to one integral recirculating system unit with an electric appliance or non-integral recirculating system with electrical appliance(s).
- The standard components of a recirculating system could include: 1) a UL listed grease filter, 2) a high efficiency particulate arresting (HEPA) filter and/or an electrostatic precipitator (ESP) or water system, 3) an activated charcoal or other odor control device, 4) a recirculating fan, and 5) a

*#

Electric Cooking VENTLESS ADVANTAGE



Electric Cooking

VENTLESS ADVANTAGE

Electric Cooking

VENTLESS ADVANTAGE

How can the Utilities Help You?

CAenergywise.com

How can the Utilities Help You?

MORE WAYS TO SAVE

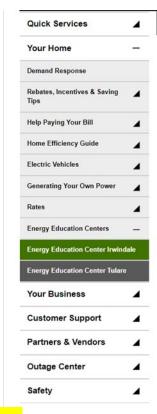
SEMINARS / WEBINARS
See What's New

TRY BEFORE YOU BUY Love It Before Buying

CALCULATORS

Calculate Energy Cost

ENERGY SURVEYS



Do-It-Yourself Energy Surveys

How can the Utilities Help You?

- Services
- ■Try B4 U Buy!
- Consultations
- Seminars
- Audits
- Meeting & Trainings

Cooking Up Savings - The Food Service Technology Center

Our Foodservice Technology Center (FTC) is a one-of-a-kind demonstration kitchen that showcases the latest energy-efficient commercial foodservice equipment and technologies for your restaurant or foodservice facility. We encourage you to come by the FTC, take a tour and 'Try Before You Buy' by "test-driving" leading manufacturers' equipment before you make your purchase decision. Find ways to speed up your cookline, improve product quality and enhance your bottom line by saving energy and money.

Contact Us

Foodservice Technology Center

Foodservice Technology Center

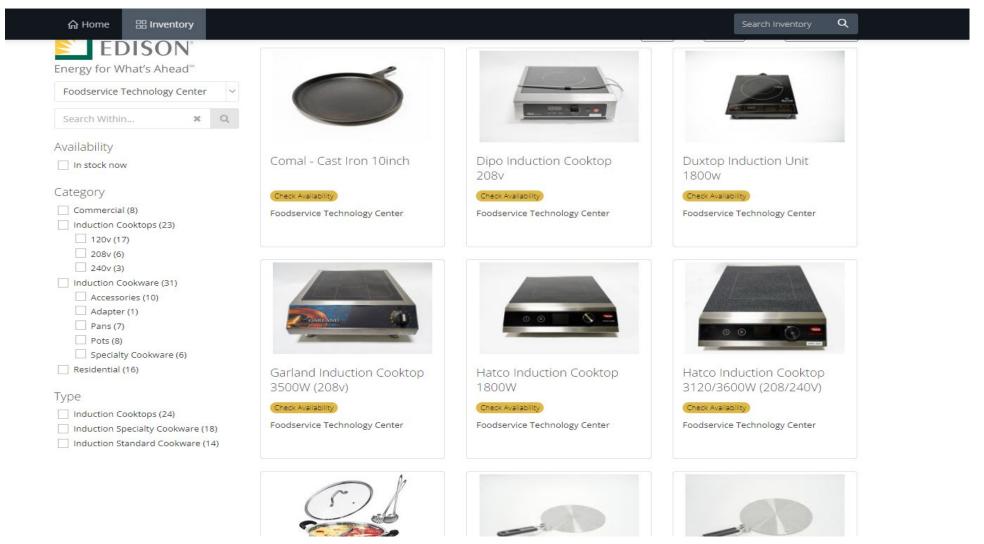
6050 N. Irwindale Avenue Irwindale, CA 91702 Phone: 626-812-7666 Hours: Monday - Friday, 8 a.m. - 5 p.m.

Next, try induction cooking for free

SCE's Table-Top Induction Lending Program

- The Table-Top Induction Range Lending Program is open to SCE customers both residential and commercial.
- Customers can borrow an induction range, wok, pot and pan for up to 14 days for free.

Three Easy Steps


- Visit our Energy Efficiency Lending Programs website at: https://sce.myturn.com/
- Create an Account
- View our inventory, select your items and place them in your cart
- Choose the date and time you would like to pick-up your induction unit
- Check out, and you'll be on your way to...

Get cooking with induction!

Next, try induction cooking for free

SCE's Table-Top Induction Lending Program

Contact Info

- Senior Engineer Andre Saldivar
 - **626-812-7558**
 - andre.saldivar@sce.com
 - EECI-FTC@sce.com
 - SCE.com/FTC

SANTA BARBARA UNIFIED SCHOOL DISTRICT

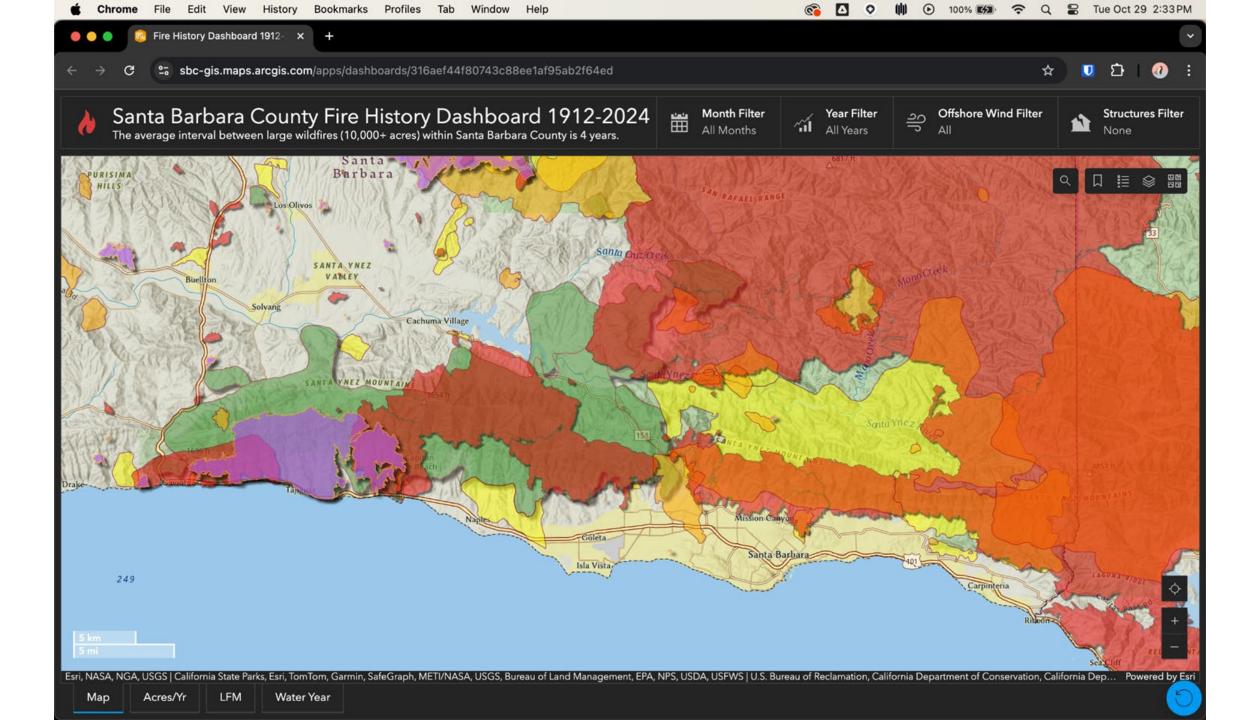
Solar & Microgrid

Flipping the Switch September 24, 2025

Overview

- Project inspiration
- Project design
- Power purchase agreement
- Building electrification

School District


Santa Barbara Unified School District

- 12 Elementary
- 4 Junior High
- 5 High Schools
- 13,000 students 57.7% on free or reduced price meals
- Most buildings built 1920s/1960s
- <20% classrooms w/ AC

Grid Vulnerability

Community

- SBUnified school sites serve as emergency shelters during natural disasters
 - Microgrids power largest kitchens
 - Gyms/MPRs shelter
- Thomas Fire 2017, mudslides
 2018, flooding 2023, etc. initiated
 the project

Solar

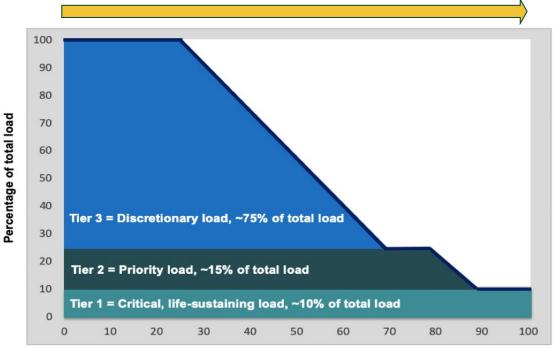
- 14 solar arrays & 6 microgrids
 - Parking lots where feasible
 - Play fields for shading
- Provides 70% of SBUnified's overall electricity use
- Offsets 93% of GHG emissions from utility electricity use
- Microgrids for the largest facilities

Tier 1 loads:

- Freezers, refrigerators, emergency shelter facilities, comms equipment (internet, radio etc)
- 100% resilience expected

Tier 2 loads:

- Multi-purpose rooms/gyms, site comms equipment
- 80% resilience expected


Tier 3 loads:

Remainder of the school < 25%
 resilience expected

Microgrid

Normal usage to Emergency use continuum

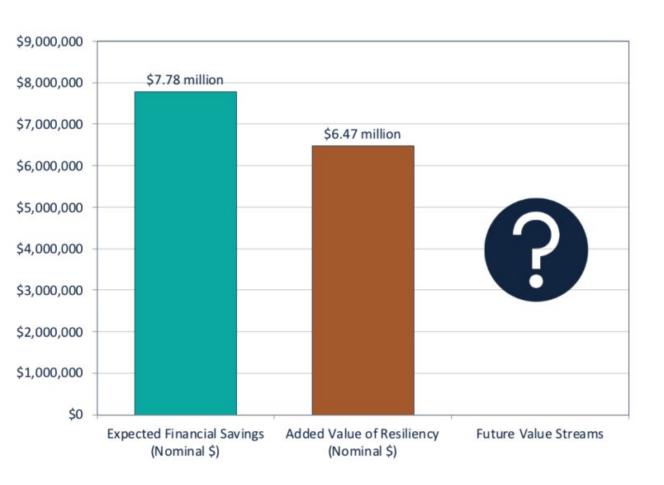

Percentage of time

Illustration of resilience levels and loads for Tiers 1-2-3 load where (a) solar is sufficient to attain zero net energy (ZNE) and (b) storage capacity equals 2 hours of solar.

Source: Clean Coalition, analysis completed for UCSB

PPA

Power Purchase Agreement (PPA)

- 28-year non-escalating flat rate
- Traded slightly higher rates for \$1.2 million contingency fund
- Performance guarantee
- Original savings: \$7.7M
- Updated savings: \$14.0M

Electrification

- Since installation of solar,SBUnified is electrifying buildings
- Heat pump water heaters
 (HPWH)- all District 100-gallon
 gas water heaters have been
 replaced with 120-gallon HPWH
- Incentives covered 95% of installation cost

Electrification

- Heat Pumps
- Moving forward, all existing and new HVAC systems will be electric heat pumps where feasible
- Project to replace 3 wings of a high school gas furnace w/ heat pumps doubled cost but introduced AC

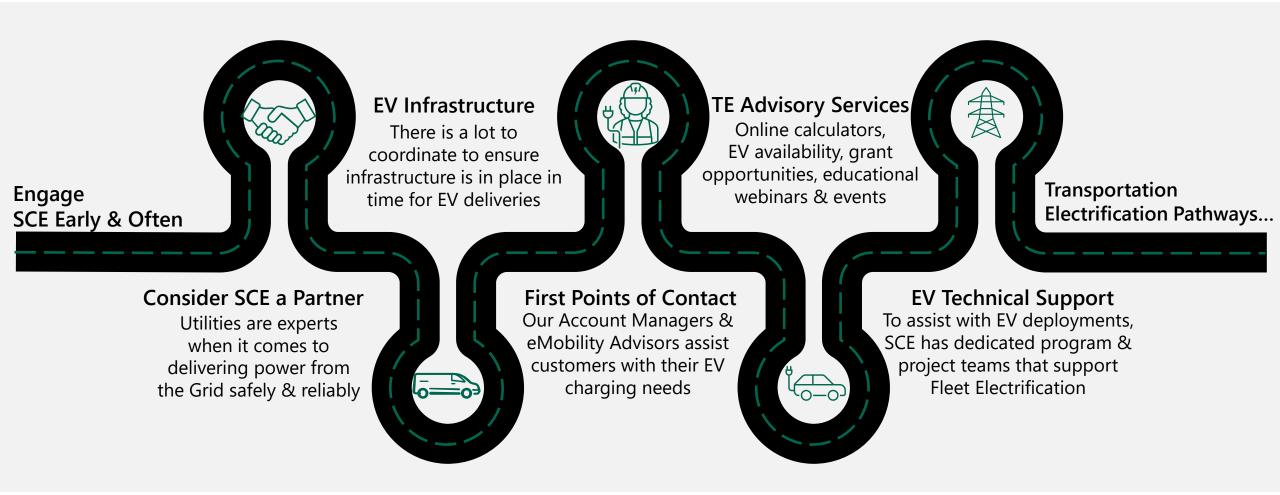
Proper Planning

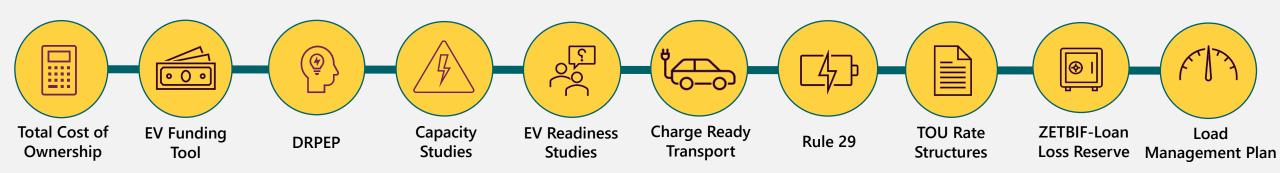
- Involving SCE early planning takes time
- Account for extra cost for bringing in new/upgraded electrical
- Grants sometimes pay for electrical upgrades but read the fine print!

Thank You

Desmond Ho
Operations and Sustainability Coordinator
DesmondHo@sbunified.org

Accountability


Southern California Edison's
Transportation Electrification Pathways


Working With SCE For Your Power Needs

Requesting or upgrading power can seem like a long and complicated process, but by planning ahead, you don't have to do it alone

SCE Supports Every Stage of Your Electrification Journey

Programs and self-serve resources are available to help you understand the impact of electrification, define requirements, and access funding for your fleet transition

START HERE:

- Your SCE Account Manager
- <u>Power Service Request</u>

SHARE YOUR PLANS:

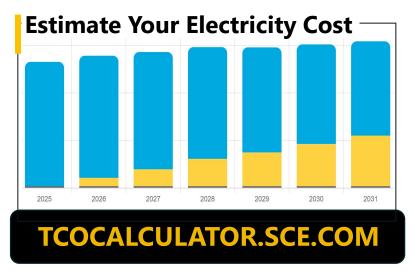
- EV Acquisition Plan Survey
- SCE Forecasting Process
- SCE System Planning Process

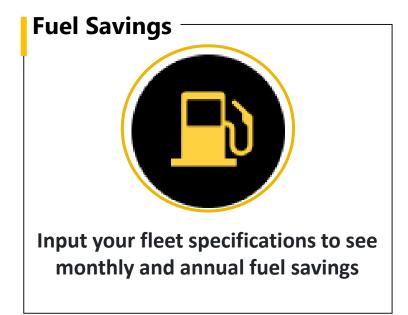
EARLY STAGES-PLANNING:

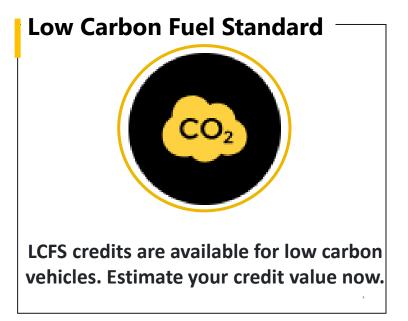
- <u>SCE Distribution Resources</u>
 <u>Plan External Portal (DRPEP)</u>
- Engineering Analysis Reports
- Total Cost of Ownership
- <u>Drayage Truck Rebate</u>
- ZETBIF-Loan Loss Reserve
- EV Funding Tool

TE ADVISORY SERVICES:

- EV Readiness Studies
- Load Management Plans
- In Person Events & Webinars


EV INFRASTRUCTURE:


- Charge Ready Transport
- EV Infrastructure (Rule 29)
- SCE Approved Product List


Total Cost of Ownership Calculator – Available Now

MDHD Electrification - Low to No-Cost EV Infrastructure Installation

Charge Ready Transport

Offset the Cost of EV Infrastructure Installation Up to a 10 – Year Fleet Deployment Strategy

Program Considerations

Highlights

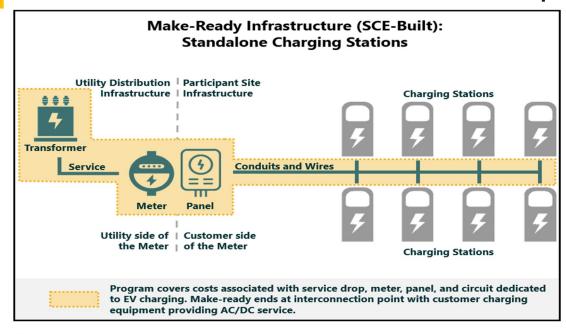
- Program Open Until December 31, 2026
- Provides Two Construction Tracks
- Can Apply for Multiple Phases / Sites
- Supports 100% Electric Class 2-8 & Off-Road EVs

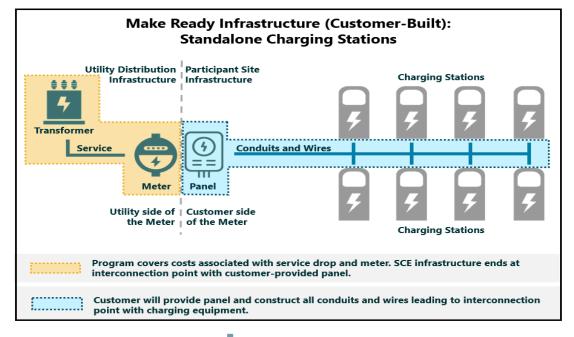
EV & Charger Requirements

Supports Phasing in of EVs up to 10 Years

- PO's Are Not Required Up Front
- 2 EVs Must Arrive Within 2 Years of Application
- Supports Level 2 and DCFC Chargers
- Chargers Must be On SCEs Approved Product List

Financial Offsets


Charger Hardware Rebate up to 50%


- School District, Transit Agency or Project
 Site in a DAC, and Applicant not on Fortune
 1000 List
- Rebate Cap \$1,800 to \$39,200 per Charger

SCE & Customer Built Infrastructure Installation Options

CRT: SCE Built & Customer Built Infrastructure

Two Distinct EV Infrastructure Installation Options:

SCE Built

- Turn-Key Solution
- Distribution to First Point of Interconnection
- No DER Interconnection in Perpetuity
- No Site Alterations or Increase of Charger kW
- More Intrusive Easement

Commonalities

- No Red-Lines on Easement and Program Participation Agreement
- Chargers Must be On SCEs Approved Product List
- Separate Meter With Commercial TOU Rate Structures
- 1:1 EV to Port Ratio Minimum

Customer Built Option

- Allows for DER Integration with R21
- Less Intrusive Easement
- More Flexibility on Customer side Infrastructure
- Build Must Be Completed by IBEW Labor
- Up to 80% Project Cost Rebate

Every EV Charging Infrastructure Project is a MAJOR Construction Endeavor Each project is unique; there are 6 high level factors that influence how long completing an EV Infrastructure project will take:

Type of Project. Make Ready or Utility Infrastructure Only? Make-Ready projects take longer, Utility is completing designs, obtaining permits, securing material, & completing construction on both sides of the meter

Site Characteristics. Does electric service already exist, or will site require distribution or service line extension? Environmental Remediation, Existing UG Utilities (natural gas, gasoline, etc.)

Capacity. <u>Does it currently exist, or will added capacity be needed to serve a project?</u> Projects may require a lot of capacity. See us as a partner! We may need to upgrade substation or reallocate circuit load

Permits & Clearances. <u>Utilities have to be given permission to complete the construction work required for EV charging from the AHJ</u> (Cities, Counties, State or Federal Entity). *Permit approval times are taking longer*

Materials & Equipment. Industry has seen a shortage of key materials and equipment needed to complete EV Charging Infrastructure projects to include Switchgear, some Transformers & smaller materials

Customer Engagement. Lead times in receiving customer applications, submitting designs, providing clearances, signing agreements, approving preliminary and final designs, etc. Customer requested changes

Engage With SCE Early & Often For Your Load Energization Project

In Addition to Sharing the Long-Term Electrification Plan, Customers Should Contact SCE as Early as Possible for Your Load Energization Project!

While <u>Each Location Has Different Levels of Capacity and Complexity</u>, In General, SCE Strongly Suggest That **The Applicant Should Inform SCE As Follows**:

- Any Size Project: No less than 2 years
- 3-10 MW Project: No less than 3 years
- 10-15 MW Project: No less than 5 years

*Timing depends on the capacity & complexity of the localized distribution grid. The times suggested above are for guidance only and may be substantially longer if project with licensing requirements are triggered

- **System Upgrades Take Time!** •
- <u>18 months+ for simple upgrades</u> (e.g. upgrade to existing circuits)

Approximately....

- 3+ years for moderate upgrades (e.g., new circuits)
- 6+ years for major upgrades (e.g., new substations)

Transportation Electrification (TE) Advisory Services

TE Advisory Services is Available to Support Customers Early in the Electrification Planning Phase

EV Readiness Studies (No Cost Project Site Study)

- Helps multifamily property owners, tribal communities, businesses and medium- and heavy-duty fleet owners determine the feasibility of their specific electrification project. Customers will receive the following:
 - Consultation call with a TE Advisor
 - High-level study of their site

Request Your Study

www.sce.com/teas

asfsaf sad fsaf af awf ewa fewar wae rwea rwaef waef awef waefwaef waef waef waef ewa afeawf ertawr wer uwaeior upwaeiorupwaer waeh fkjwaehfl kwae fowef waeofhewahof ewhf weahr ewhr; waehwea rhwaekjf hewafh waekjfjewkrhjew rjewaljr waejf pwaejfp ewj fewajf ewpfj awfj-br/r>-br/r>aejf ;alejf-ieof ;ajf ;waejf ;waejf

aoifaesifiuehf owanfnszf hiz.eshi frInfziuezn.ef ue fnue

SCE Supports Every Stage of Your Electrification Journey

For More Information:

Ramiro Lepe

(626) 842-7129

Ramiro.Lepe@SCE.com

ORANGE UNIFIED SCHOOL DISTRICT

Presented By: Omar Dena, Transportation Manager

OUSD Fleet Electrification Overview

PHASE 1 - COMPLETED

- 15 Blue Bird T3REs
- 15 Nuvve 19.2kW
- Charge Ready Transport SCE Built

PHASE 2 – IN PROGRESS (Final Stage)

- 8 Blue Bird T3REs & 8 Micro Bird G5
- 13 Nuvve 19.2kW
- 3 Nuvve 60kW V2G
- Charge Ready Transport SCE Built

PHASE 3 – IN PROGRESS (Program Agreement)

- 10 Micro Bird G5 (VAP 7 more buses)
- 5 60kW V2G
- 5 160kW V2G
- Charge Ready Transport SCE Built

Total Vehicles in Fleet: **120**How many EVs in operation today? **17**

The Feasibility of Transitioning to Electric

Operational Considerations & Regulatory Factors

Charging
Infrastructure & Site
Planning

Funding & Incentives

Utility Engagement & Managed Charging

Environmental Impact & Stakeholder Engagement

Training, Maintenance & Operational Readiness

Key Steps for a Successful ZEV Transition

Comprehensive Fleet Assessment

Define Goals & Objectives

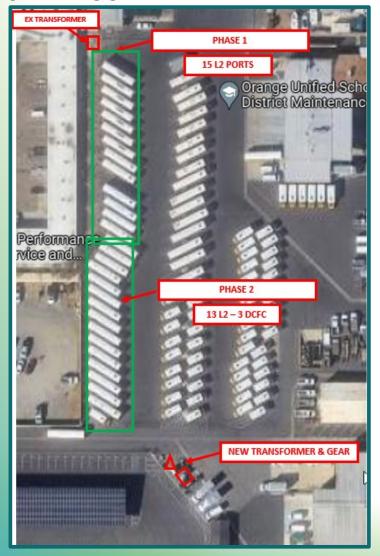
Roadmap for Implementation & Infrastructure

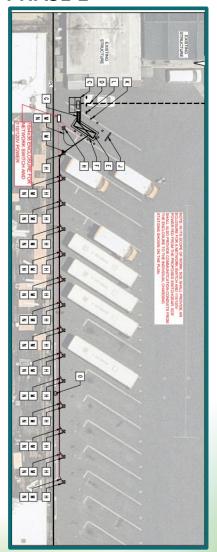
Outline a Phased Approach

Stakeholder Engagement & Partnerships

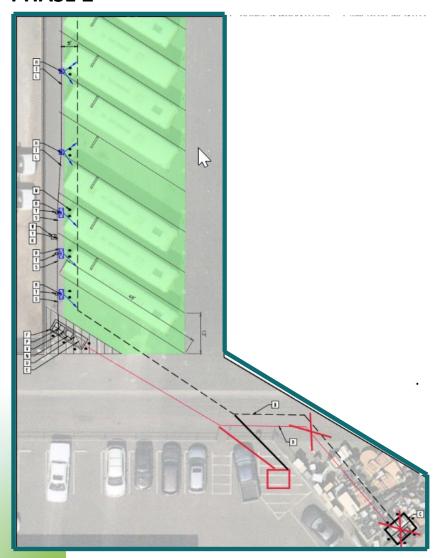
Internal & External

Training & Support Program


Shop & Driver Training


EV Infrastructure Installation Support & Layout

SCE's Charge Ready Transport Program


SITE LAYOUT

PHASE 1

PHASE 2

EV Infrastructure Installation Support & Layout

SCE's Charge Ready Transport Program

PHASE 3 – OPTION #1 CONFIRMED BY SCE

Charger Selection

(5) 60kW V2G

(5) 160kW V2G

EV Types Supported

Blue Bird T3REs Micro Bird G5

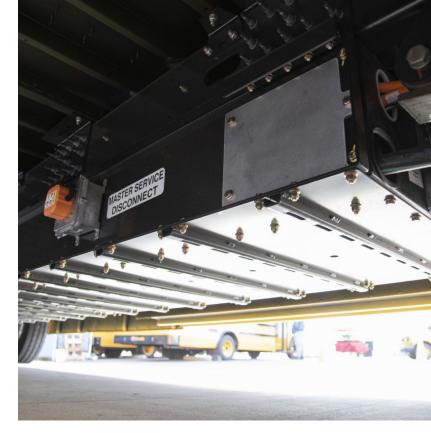
Grants and Incentives

EVs Procured	7	2	6	2	17
Dates Arrived	2021	2022	2023	2024	Pending
Funding Program	VW Mitigation Trust Fund	SCAQMD & HVIP	HVIP	HVIP	EPA, HVIP, HTST Plan
Funding Amount	\$2.8M	\$800,000	\$1.26M	\$396,000	\$5.57M
District Out of Pocket Cost	\$220,000 (sales tax)	\$30,612 (sales tax)	\$1.23M	\$542,000	\$1.53M
Challenges	None	None	None	None	Temporary Funding Pause
Funding Timeline	1 year	1.5 years	6 months	6 months	Approved 1.5 years

Navigating Range Anxiety

Route Optimization & Planning
Route Design / Data Analysis

Battery Management & Range Assessment
Maintenance / Energy Management


Flexibility & Adaptability
Monitoring / Feedback

EV Bus Spec'sBattery Size

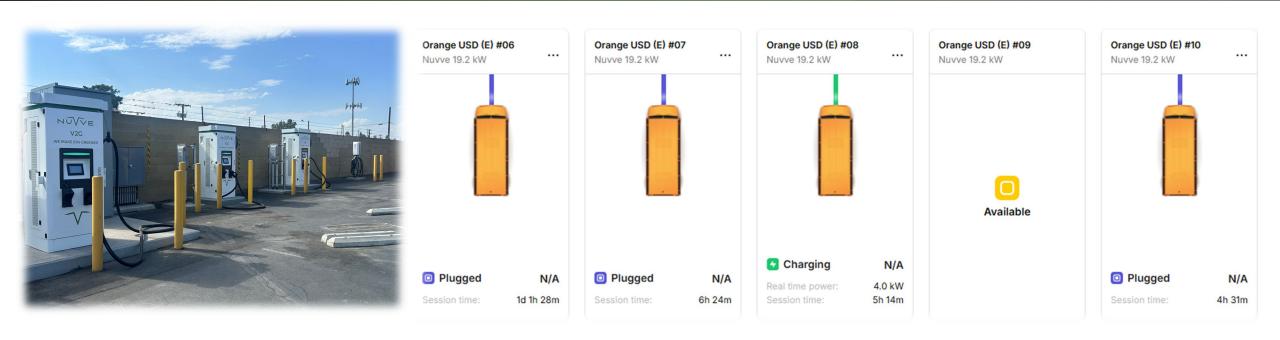
Driver & Mechanic Training

Comprehensive Training Program

Driver / Maintenance Staff Training

Familiarize Staff with Infrastructure

Charger Operation Training


Feedback & Support

Regular Updates

Data & Managed Charging

Monitor and manage your electric vehicles and chargers in real-time Gain effective oversight on your assets View detailed information about your assets

Electrification Summary

Achievements

Reduced Emissions
Operational Cost Savings
Improved Rider Experience

Utilization

Challenges

Range Limitations
Charging Time
Space Constraints
Driver Monitoring & Data

Lessons Learned

Address Infrastructure Needs Early On

Scalability Considerations

Funding and Resources for School Electrification

Funding Approaches

Summary of Funding Opportunities

Traditional Sources for Capital Projects

- State and/or district level funding (noncompetitive)
- Voter approved bonds or levies

Federal & State Disbursements or Allocations

- Federal: noncompetitive, based on funding formulas
- State Lottery(s)
- Other State

Grants, Rebates, and Incentives

- Federal (competitive)
- State (competitive)
- Local (competitive)
- Utility rebates & incentives

Other Procurement & Financing Options

- Energy Service
 Company / Energy
 Performance
 Contracting
- Energy Efficiency as a Service
- Utility Energy Service Contracts
- Private Loans

Funding Stacking

- Local bonds (or levies)
- State matching funds
- Utility incentives
- Low interest loans
- Grants
- Power Purchase Agreements (PPAs)
- Energy Savings Performance Contracts (ESPC's)
- ... *Creativity*

Funding Stacking Example

Medium district, Climate zone 4C, rural

- This district refers to it's community as tax averse and has not been able to pass a bond in quite some time.
- Immediate needs in the district to address poor thermal comfort, need for air conditioning in schools, poor IAQ, poor lighting, and filtration to handle wildfire smoke.
- The district utilized a set of funding mechanisms aside from bonds including:
 - \$4M in ESSER (ESSER II and III) funds
 - \$130k in SB 1149 allocation from the State Dept. of Energy
 - \$15.5M in private (low interest) FFC loans

Utility PPC
Funded
allocation from
State Dept. of Ed
\$130k

Federal: ESSER II & III \$4M

Other
Procurement /
Financing Options

(Low interest loan)

\$15.5M

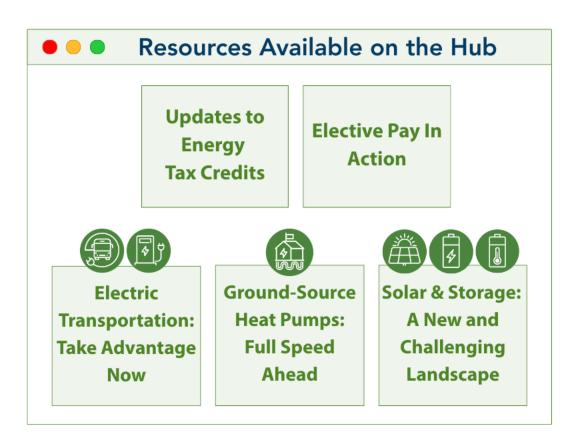
National Funding Opportunities

- Investment Tax Credit (ITC):
 - Sec. 48 (Ground source HP): good to go!
 - Sec. 48E (Solar and storage): new rules, recommend commence construction by Dec 2025
 - Sec. 30C (EV charging): placed into service by June 30, 2026
 - Sec. 45W (EV Buses and other clean vehicles): Acquired by Sept 30, 2025 and placed into service before or after 9/30/2025
 - 179D: Commence construction by June 30, 2026

Investment Tax Credit Base and Bonus Credits

Credit: Undaunted K-12

Way more detailed info here: <u>Undaunted K-12 Update on Clean Energy Tax Credits</u> for Schools


Energy Tax Credits for Schools Hub

Unlock federal funds for your school's facilities

Through Elective Pay, school districts can access federal energy tax credits to defray the cost of highly-efficient, modern energy technologies. These upgrades can help districts reduce operating costs and create safer, healthier, and more resilient facilities.

UndauntedK12's Energy Tax Credits for Schools

Hub provides up-to-date information and resources
to help district leaders and their partners learn about
these tax credits, understand recent changes, and
make the most of this opportunity.

Visit www.undauntedk12.org to learn more. Questions? Contact info@undauntedk12.org

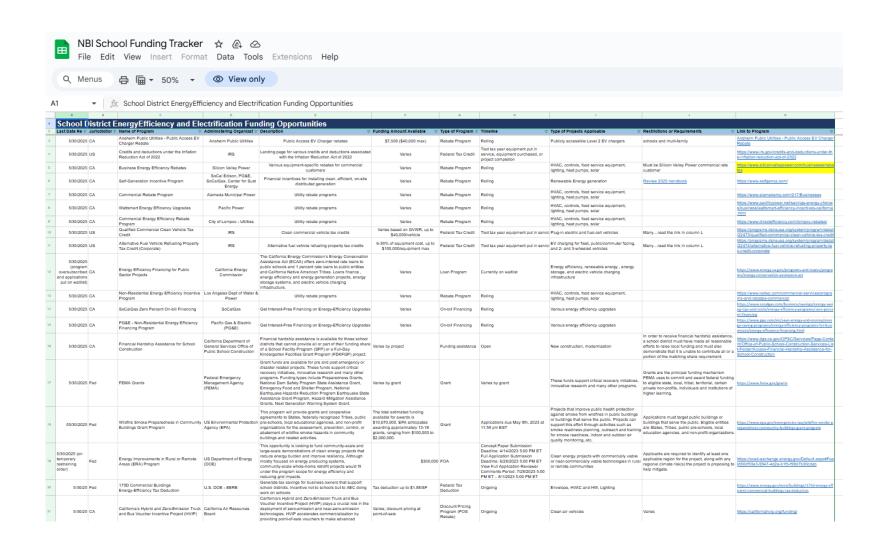
State and Local Funding

 DSIRE (Database of State Incentives for Renewables & Efficiency:

https://www.dsireusa.org/

- Utility (get to know your utility!)
- Match funding from State Programs

School Funding and Opportunities Tracker!


Found here:

https://newbuildings.org/ resource/electrificationtools-for-schools/

Have an opportunity to add or looking for something specific?

Email:

schools@newbuildings.org

California Highlights

- K-12 Energy Efficiency Program (KTEP): https://www.energy.ca.gov/solicitations/2025-04/pon-24-002-k-12-energy-efficiency-program-ktep
 - Zero-interest loans
 - up to \$3 million per application
 - repayment over 15 years
- Proposition 2: Per-pupil grants (slide scale state/local share)
- Prop 2 NEW: \$330M for Small School Districts (new construction) & \$400M (modernization)

Resources

ELECTRIFICATION TOOLS FOR SCHOOLS

Online Tool / July 7, 2025 / Getting to Zero

This resource page provides K-12 stakeholders with building electrification tools specifically designed for schools.

As districts in Southern California and across the country strive to create healthier, more sustainable learning environments, electrifying school buildings is a crucial step toward reducing costs, carbon emissions, and enhancing energy efficiency. Here, you'll find practical resources, templates, funding information, and technical support to help your school navigate the path to electrification and decarbonization.

Funding Tools for School Electrification

School Funding Tracker

This funding tracker is iteratively updated with funding and policy updates for school districts in California. The tracker includes available state and local funding opportunities, policies impacting schools, and federal funding opportunities. This tracker is updated frequently, but if a key resource is missing, please reach out to schools@newbuildings.org to help maintain a robust dataset.

Checklist and Tips for Grant Writing for Schools

This document includes tips and common data needs for grant applications. The actionable tips in this document come from districts that have successfully won grants and from reviewers of federal grant programs. These can apply to state, federal, and private grants. This list is not exhaustive, but it is a great starting point to be ready when grants become available.

Templates for School Electrification

School Electrification Project Requirements Template for California

The School Electrification Resolution Template serves as a starting point for establishing formal district documentation regarding electrified facilities. It includes instructions on how to successfully adopt the resolution to declare the districts commitments to healthy, electrified, and resilient facilities. A resolution is a formal statement of a decision by the district and may include specific and measurable technical goals.

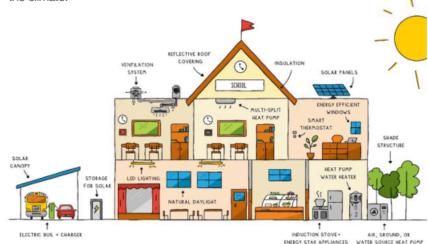
newbuildings.org/resource/electrification-tools-for-schools/

Webpage Tools

- Guides and Roadmaps
- Interactive Cost Dashboard
- Electrification Factsheet
- Funding Tracker
- Checklist and Tips for Grant Writing
- Templates

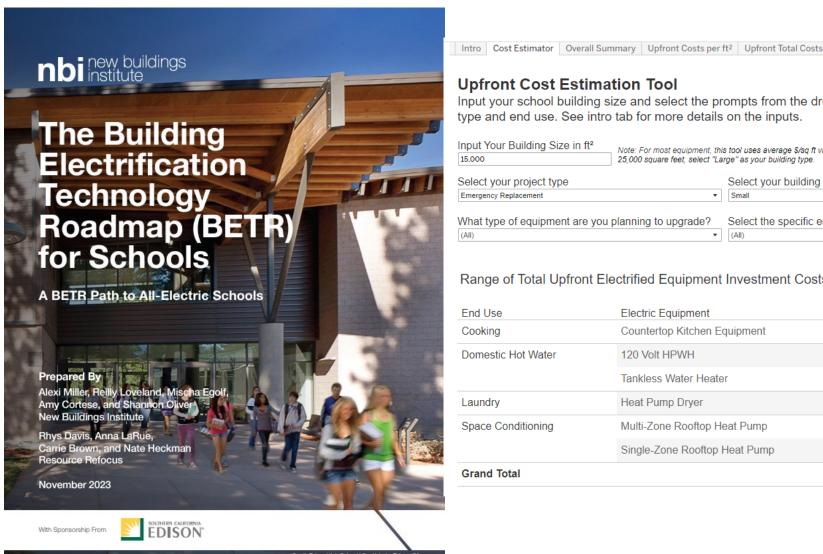
Also found on:

www.sce.com/partners/resources/reachcodes



Powering Up Our Schools

A Bright Future with Electrification


Why Electrification Matters

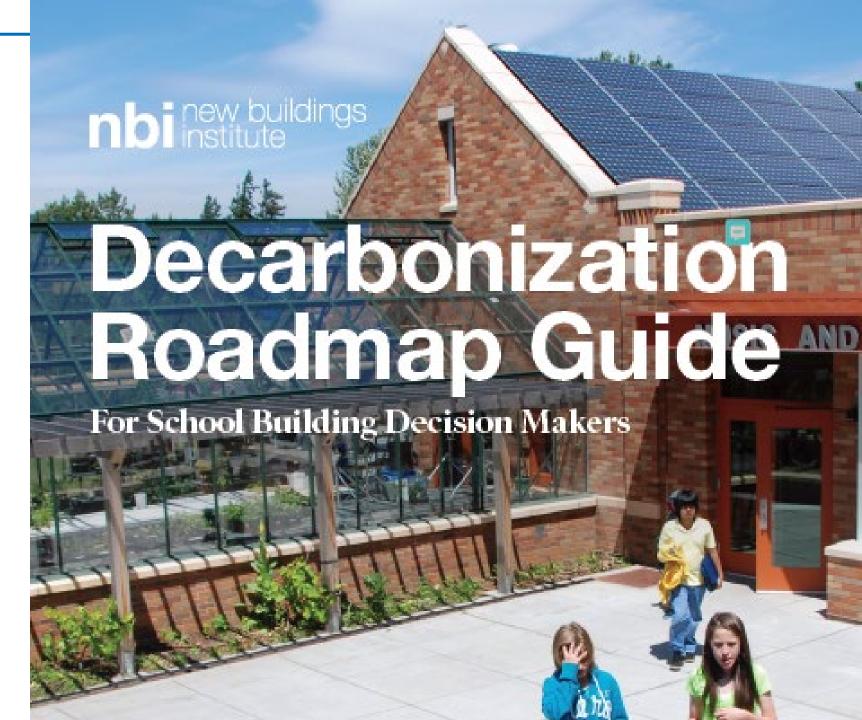
School electrification means replacing fossil fuel powered systems with clean, electric alternatives. Swapping out old gas-fired systems for clean electric ones means students breathe easier, classrooms stay comfortable year-round, and our buildings run more efficiently so schools save money in the long run. By electrifying our schools, we're cutting pollution, lowering energy costs, and creating safer spaces for students and staff. It's a win for kids, communities, and the climate.

An all-electric school. Artwork by Nicole Kelner.

BETR Report and Interactive Tool

Upfront Cost Estimation Tool

Input your school building size and select the prompts from the dropdown menus below to calculate upfront cost estimates by equipment type and end use. See intro tab for more details on the inputs.


Input Your Building Size in ft ²	_ Note: For most equipment, th	is tool uses average \$/sq ft values to estim	ate upfront project costs. If your square footage is	greater than
15,000	25,000 square feet, select "La	arge" as your building type.		-
Select your project type		Select your building type		
Emergency Replacement	•	Small	¥	
What type of equipment are you	planning to upgrade?	Select the specific equipment to	to estimate	
(All)	•	(All)	•	

Range of Total Upfront Electrified Equipment Investment Costs

End Use	Electric Equipment	Total Cost Estimate Low	Total Cost Estimate High
Cooking	Countertop Kitchen Equipment	\$500	\$5,800
Domestic Hot Water	120 Volt HPWH	\$2,100	\$3,400
	Tankless Water Heater	\$4,100	\$26,900
Laundry	Heat Pump Dryer	\$400	\$2,200
Space Conditioning	Multi-Zone Rooftop Heat Pump	\$121,500	\$272,200
	Single-Zone Rooftop Heat Pump	\$148,500	\$515,700
Grand Total		\$277,200	\$826,200

School Decarbonization Toolkit

- Roadmap Guide
- Templates for:
 - Goals
 - Owners Project Requirements
 - Sustainability
 Checklist
 - Workplans

Sample Templates

Energy and Carbon Project Requirements

Template Project Requirements for Healthy, Energy Efficient, Carbon Neutral Schools

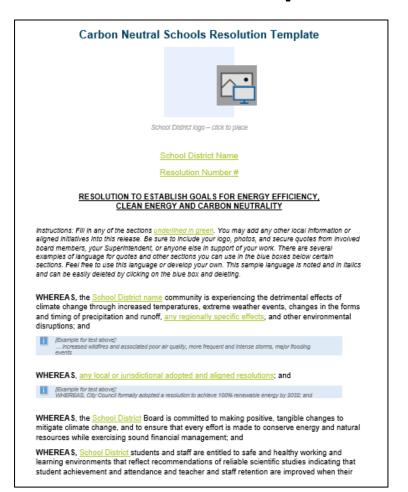
California Edition

Updated April 2025

School District logo – click to place

School District Name

Date Written or Updated

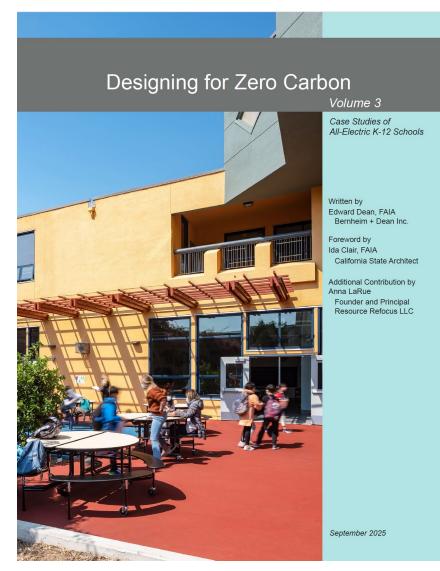

ENVELOPE COMMISSIONING: Envelope commissioning will be prioritized in modernization projects, as with all capital projects. This process begins with a blower door assessment and thermal imaging of the current building shell (where it will be retained) to identify leakage areas of concern. Existing envelope improvements should be prioritized based on the building testing results to ensure updates are maximizing performance improvement. Design teams should refer to the technical specifications of the <u>Advanced Energy Design Guide for K-12 School Buildings</u> for further details on building and building envelope commissioning.

The chart below summarizes which elements will be incorporated into each modernization and retrofit project and which will only be included on a case-by-case basis. Design teams will consider the synergies with planned scope of work, available funding, and site-specific design parameters.

Add in any additional scope items that you would like attended to in capital modernization projects. Make sure to note if these are mandatory or case-by-case. Also be sure to check the mandatory and case-by-case distin

	MODERNIZATION		
SCOPE See further details below	Mandatory	Case-by- case	
Envelope air sealing and insulating walls and openings	✓		
Roofs Insulation, rainwater collection		✓	
Glazing & Shading heat minimization, high performance windows		✓	
Lighting LED lighting & controls	✓		
Electrical energy monitoring	1		
Metering submetering		√	
Kitchen electrification & ENERGY STAR energy-efficient equipment	√		
Heating electrification & maintainability		✓	
Ventilation heat recovery & filtration		✓	
Controls set points & operating hours	✓		
Domestic Hot Water recirculation pumps & pipe insulation	1		
Plug Loads are measured & controlled	✓		
Water backflow device & high-efficiency fixtures	✓		
Schoolyard green schoolyards, stormwater mgmt. & rainwater collection		✓	
Materials CalGreen, CA Section 01350 & CA Buy Clean	✓		
Renewables Onsite solar PV, storage		✓	
Zero Energy Ready roof solar readiness	1		

Carbon Neutral Schools Resolution Template


All-Electric School Case Studies

Designing for Zero Carbon: Volume 3, Case Studies of All-Electric K-12 Schools

PDF: https://calbem.ibpsa.us/resources/case-study-books/

Flipbook:

https://online.flipbuilder.com/bernheimdean/qost/

NBI Schools Help Desk!

- Do you need 1:1 coaching or support? Email <u>schools@newbuildings.org</u> to receive support!
- Topics include but not limited to:
 - Funding and grant support
 - Stakeholder engagement
 - Energy management
 - Goal setting and planning
 - Indoor air quality (IAQ)
 - Technologies and systems
 - Solar and renewables
 - Resilience

Thank You!

Questions?

